Protein kinase C activation decreases activity-dependent attenuation of dendritic Na+ current in hippocampal CA1 pyramidal neurons.

نویسندگان

  • C M Colbert
  • D Johnston
چکیده

Action potentials recorded from the soma of CA1 pyramidal neurons remain relatively uniform in amplitude during repetitive firing. In contrast, the amplitudes of back-propagating action potentials in dendrites decrease progressively during a spike train. This activity-dependent decrease in amplitude is dependent on the frequency of firing during the train and distance from the soma. Previously, we described a property of Na+ channels that provides a plausible mechanism for the activity dependence of the amplitude of the dendritic action potentials: available Na+ current decreases during trains of action potentials through an inactivation, distinct from fast inactivation, that appears rapid in onset, but slow and voltage-dependent in its recovery. In this study we found that activation of protein kinase C by phorbol esters decreased this activity-dependent inactivation of pharmacologically isolated Na+ current in cell-attached dendritic, but not somatic, patches. Similarly in whole cell recordings phorbol esters decreased the attenuation of back-propagating dendritic action potentials during trains. These results indicate a novel effect of protein kinase C on the dendritic Na+ channel and further support the hypothesis that the activity dependence of the dendritic action potentials is derived from the inactivation properties of Na+ channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAPID COMMUNICATION Protein Kinase C Activation Decreases Activity-Dependent Attenuation of Dendritic Na Current in Hippocampal CA1 Pyramidal Neurons

Colbert, Costa M. and Daniel Johnston. Protein kinase C activarent because of this inactivation was approximately twofold tion decreases activity-dependent attenuation of dendritic Na curgreater in dendritic patches than somatic patches (Colbert rent in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 79: et al. 1997). Although the K currents did not show any 491–495, 1998. Action potentials...

متن کامل

Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of th...

متن کامل

Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kina...

متن کامل

ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons.

Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling pathway was responsible for BDNF's effects on sp...

متن کامل

Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism.

The serotonin (5-HT) innervation of the prefrontal cortex (PFC) exerts a powerful modulatory influence on neuronal activity in this cortical region, although the mechanisms through which 5-HT modulates cellular activity are unclear. Voltage-dependent Na+ channels are one potential target of 5-HT receptor signaling that have wide-ranging effects on activity. Molecular and electrophysiological st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 1998